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Abstract 

Mediators are a critical component of any data 
warehouse; they transform data from source formats to 
the warehouse representation while resolving semantic 
and syntactic conflicts. The close relationship between 
mediators and databases requires a mediator to be 
updated whenever an associated schema is modified. 
Failure to quickly pwfornz these updates significantly 
reduces the reliabiliry of the warehouse because queries 
do not have access to the most current data. This may 
result in incorrect or misleadirlg responses, and reduce 
user conjidence in the warehouse. Unfortunately, this 
maintenance nmq be a significant undertaking if a 
warehouse integrates several dynamic data sources. This 
paper describes a meta-data framework, and associated 
software, designed to automate a significant portion of 
the mediator generation task and thereby reduce the effort 
involved in adapting to schema changes. By allowing the 
DBA to concentrate on identifying the modifications at a 
high level, instead of reprogramming the mediator, 
turnaround time is reduced and worehouse reliability is 
improved. 

1. Introduction 

One of the most formidable problems faced in 
accessing data from multiple heterogeneous sources is 
resolving schema and data conflicts. In evolving 
scientific domains such as genetics, this problem is 
compounded by frequent source schema changes. The 
D&Foundry project at LLNL is aimed at supporting the 
domain scientists who must rely on data from these 
dynamic sources. DataFoundry uses a mediated data 
warehouse architecture, supported by a carefully designed 
domain-specific ontology. This architecture is able to 
rapidly adapt to source schema changes by automatically 
generating mediators directly from the me&data defined 
in the ontology. 

Mediators are critical components of data 
warehouses. They are responsible for transferring data 
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from the source dat8bases’ to the warehouse, and for 
resolving all conflicts between the source and target 
representations. In traditional data warehouses, mediators 
regularly repopulate the warehouse and ensure that the 
warehouse data remains up to date. In a warehouse using 
partially materialized views of distributed data, however, 
the mediators are also responsible for dynamically 
providing access to non-materialized data. This 
additional responsibility makes high reliability imperative 
since failures directly affect the usability of the 
warehouse. Unfortunately, whenever a schema changes, 
the associated mediators need to be updated to reflect the 
modifications. Until these changes are incorporated, 
warehouse usability is compromised; in the best case, 
queries return incomplete or slightly out of date data; in 
the worst, misleading or incorrect results. It is critical for 
the long-term feasibility of the warehouse to ensure these 
interruptions arc as short as possible and do not adversely 
affect the perceived reliability. In domains where schema 
changes are infrequent this is not a significant conccm. 
However, in highly dynamic scientific domains frequent 
schema modifications are a reality that must be faced. 

To evaluate the effects of different design decisions, 
D&Foundry has developed a prototype data warehouse 
to aid in genetics research. Genetics is an ideal domain in 
which to validate this research for two reasons. First, it is 
an evolving scientific domain in which the interactions of 
the undalying data are not yet fully understood. As 
experimental techniques we developed, and 
understanding of the data grows, the database schemata 
adapt to reflect this new knowledge. Given the speed of 
discovery in this area, the corresponding rates of schema 
change are extremely high: based upon previous efforts, 
we anticipate one schema modification every 2-4 weeks 
once all of the desired sources arc integrated. Second, by 
successfully providing a warehouse linking several 
existing community databases, D&Foundry will provide 
an invaluable resource to genetics researchers. While 
somewhat independent of computer science research, this 
validation ensures the practicality of the approach. 

’ We use database to refer to any managed collection of 
data including, but not limited to, flat files, relational 
databases and object-oriented databases. 



In many domains, warehouse maintenance can be 
nddresscd by straightforward techniques. Unfortunately, 
these approaches result in a” unacceptable amount of 
down-time in scientific domains, due to the frequency of 
schema modifications. DataFoundry makes extensive use 
of a carefully designed API and ontology to overcome 
this problem by automatically generating the mediators 
directly from the m&-data. Thus, when a schema 
changes, the DBA needs to update only the ontology, as 
compared to directly modifying the mediator code. This 
has the additional benefits of improving code reuse, 
providing a consistent API to wrappers, and providing a 
useful knowledge base for other applications such as a 
high level interface to the warehouse and autolnatic 
schema evolution. 

This paper describes the D&Foundry m&-data 
representation and how it is used to automatically 
generate mediators, thereby reducing the effect of source 
changes and improving access to heterogeneous data 
sources. A comparison with other research efforts is 
provided next in section 2, followed by a brief overview 
of the DataFoundry architecture. Section 4 describes the 
information represented in the ontology, and Section 5 
outlines how it is used to generate the mediators. Finally, 
we conclude with a summary of our approach and outline 
future research directions. 

2. Related efforts 

This section highlights a few of the many research 
projects in these areas and, where appropriate, compares 
them to DataFoundry. 

Mediators [Zl] are software agents which act as 
translators for data encapsulating all the routine work of 
converting data from one format to another. While, in 
theory, these conversions may be arbitrarily complex, in 
practice they are often limited to trivial operations. 
Mediators may also include the ability to identify the data 
sources providing the requested information and 
dynamically forward the request to them. 

The TSIMMIS [3][7][S] project at Stanford uses 
mediators for transformation of data from several diverse 
sources. TSIMMIS, like most mediated architectures 
(including InfoSleuth [Z], DIOM [14] and Disco [ZO]), 
does not provide a global schema and delegates conflict 
resolution to the end user. A serious problem with pure 
mediated architectures is data source failure; when a 
source is unavailable, incorrect query results may be 
returned. Disco [20] attempts to address this problem by 
returning the uncompleted portion of the query, which can 
be reevaluated later. Da&Foundry takes a different 
perspective. A global schema is provided on the 
assumption that the end user will not be familiar enough 
with the individual souses to resolve subtle conflicts, 
Further, by utilizing the warehouse as a local cache, the 

effects of a” unavailable source can be significantly 
reduced. 

Ontologies [9][10] store knowledge about real-world 
objects and their relationships. They enable high-level 
queries to be posed directly against a database, instead of 
embedding them in application programs. Cyc [13] is one 
of the first, and best known, ontoltigy-based projects. It 
defines a large base of cotnmon-sense knowledge that 
works reasonably well in many environments. 
Unfortunately, it lacks the specialized vocabulary 
required to be effective in terminology-rich domains. 
When ontologies are used in specific domains, such as the 
medical field, the challenge is to conceptually link 
multiple information resources that use different 
terminology 161. The OBSERVER project [15][16] is 
aimed at providing a framework for interaction among 
existing ontologies in a global information infrastructure. 
This project is aimed at bibliographical information and 
uses a thesaurus to resolve terminological differences 
among the ontologies. D&Foundry links biological 
databases that do not provide significant ontological 
information [6], and itnplements a global ontology as a 
facilitator for information integration from disparate 
sources. Other applications of ontologies have been in 
linguistics-related fields to help natural language 
processing 1171. While D&Foundry intends to explore 
using the ontology not only as a resource for generation of 
mediators, but also to support the query processor and 
guide schema evolution, applications such as NLP are not 
currently being considered. 

Materialized views [11][19] of source data have long 
been used as a mechanism for fast access to data. To 
maintain consistency a well-defined view update policy, 
based on the number and importance of changes to the 
source, is required. In data warehouses, partially 
materialized views [l] have been proposed as a method to 
reduce data communication between the sources and the 
warehouse. DataFoundry uses partially materialized 
views to improve query response time by caching the 
most frequently accessed data. Mechanisms to 
dynamically refresh warehouse data when it is not 
available or is inconsistent are also included. 

3. The DataFoundry architecture 

The goal of DataFoundry is to provide integrated 
access to multiple, evolving, domain databases through a 
consistent interface. To facilitate this, we have chosen a” 
architecture that combines the advantages of tightly- 
coupled federated databases [18] with those of data 
warehouses [12]. Federated databases provide a global 
schema for the underlying source databases, each of 
which retain control and management of their data. 
Queries posed against the global schema are translated 
into individual queries against the source databases, and 
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Figure 1. The DataFoundry architecture 

their results are combined before being returned to the 
user. This query mechanism is made possible by the 
mappings between the information contained in the 
source databases, maintained in the global query 
processor. Traditional data warehouses, on the other 
hand, materialize the summarized data in a local store 
which permits fast access to the warehouse data. Data 
from different sources is merged together in a batch 
operation and stored at the warehouse to provide 
immediate responses to queries. This scheme requires 
frequent refreshes to the local cache if the source data 
changes often. 

D&Foundry seeks to support scientists in evolving 
research areas where the source data and schemata change 
frequently - a goal for which neither a federated database 
nor a conventional data warehouse are completely 
satisfactory information architectures. To quickly adapt 
to the changes in source database schemata D&Foundry 
uses a mediated [211 data warehouse architecture 
supported by a domain-specific ontology. In this 
architecture, only data that is frequently accessed is 
materialized in the warehouse cache, thus providing fast 
access for most queries. The overall dataflow architecture 
in the DataFoundry is shown in Figure 1. The main 
components in this architecture are. the ontology, the 
mediator interface to the source databases, the application 
user interface, and the data warehouse. Although the 
application user interface is not currently implemented, 
the remainder of this section describes the architecture as 
if it were completed. 

To access data from the warehouse, an application 
queries the application user interface. The interface 
consults the ontology to determine whether the data is 

available in the warehouse or if it needs to be dynamically 
retrieved from the source databases. Access to data 
sources is through the mediator interfaces which 
transform the data from the source format to the 
D&Foundry format and return the results to the 
warehouse. 

Figure 2 outlines the steps involved in loading the 
warehouse: obtaining data from the source, transforming 
it to the warehouse format, and entering it into the 
warehouse. In practice, these steps are not always 
distinct. Often, a single program will parse the input file, 
and transform the data before storing i,t in an internal 
specification. This internal representation can then be 
entered into the warehouse, possibly after further 
transformations. Intermingling of wrapper and mediator 
is permitted because the mediator API is rarely defined. 

A carefully designed API is critical to reduce the 
maintenance requirements of the warehouse; it allows the 
ontology and warehouse to evolve without affecting the 
wrapper. DataFoundry uses a well-defined API, based on 
the ontology concepts, to provide a clear separation 
between the mediator and wrapper functionality. 
D&Foundry uses an object-oriented model for the 
description of data items internally, without placing any 
restrictions on the data model used for data storage in the 
warehouse or in the source databases. The wrappers are 
responsible for the translation between the underlying 
data model and the global object model. 

Mediators in the Da&Foundry are expected to 
transfer query requests to appropriate data sources and 
manage the integration of information returned from the 
different sites. In addition, they are also designed to act 
as managers for detecting changes in source databases and 
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Figure 2. The integration process. 

propagating updates in the materialized data to the 
warehouse cache. 

4. The ontology 

The D&Foundry ontology is a collection of 
Ontolingua* [91 classes and instances that define three 
types of knowledge: formal definitions of databases, 
mappings and methods; concrete instances of these 
descriptions; and domain-specific abstractions 
representing knowledge about a particular field. The 
formal definitions are provided for completeness, and are 
not discussed furthe - the interested reader is directed to 
[5]. Instead, we focus on the domain specific abstractions 
and three of the concrete instances: the database 
descriptions; the mappings between the abstractions and 
descriptions; and the transformations between different 
abstraction representations. These four concepts provide 
all of the me&data necessary to generate mediators 
automatically. 

The remainder of this section uses the examples 
shown in Figure 3 and Figure 4, to describe. these 
components in detail. First, however, we offer a brief 
introduction to the genomic terminology used in these 
examples. Proteins are produces by genes to perform B 
specific function. They arc generally represented as a 
linear sequence of amino acids, but are actually complex 
3-D structures uniquely determined by these sequences. 
There are 20 amino acids, each of which is comprised of a 
collection of atoms (primarily carbon chains) and may be 
represented by either a l-character IX 3.character 
abbreviation. For a given sequence, each atom has a 
unique primary position in 3-D space, although some 
atoms may occur in alternative positions with a given 

’ Ontolingua represents knowledge in a generalized 
format so it can be easily transferred to multiple 
knowledge reasoning systems. 

probability (this is called the position’s temperature). 
Figure 3 shows a mapping between the atomic positions 
in the warehouse and the corresponding abstraction. 
Figure 4 presents the methods used to translate between 
the different amino acid representations. 

4.1. Domain-specific abstractions 

Abstractions are the core of the domain specific 
knowledge represented by the ontology. Conceptually, an 
abstraction encapsulates the different components and 
views of a particular domain-specific concept. 
Practically, an abstraction is the aggregation of all of a 
concept’s associated attributes and representations, as 
presented by the participating databases. As such, the 
abstractions contain a superset of the information 
contained in any individual database. 

Each abstraction is an Ontilingua class that inherits, 
directly or indirectly, from a distinguished obsrracrior~ 
ChSS. The abstraction’s attributes are grouped into 
characteristics that combine related attributes and 
alternative representations of the same attribute. The 
genome abstraction shown in Figure 3 presents the 
characteristics and attributes associated with the afoms 
abstraction. Notice that while the id, flexibility, elemenf 
and alternativeqosition characteristics have only one 
attribute associated with them, the position characteristic 
has three, which combined represent a position in 3-D 
space using Cartesian coordinates. If there were multiple 
representations of the same characteristic (e.g. a long 
element name) there would also be multiple attributes in 
the same characteristic. While this grouping has no affect 
on the mediator, it provides a mechanism to document the 
conceptual relationship between these attributes. 

This example also highlights two interesting features 
of the attribute representation. First, it demonstrates that 
complex attributes can be defined, encouraging a natural 
description of the domain specific concepts. Consider the 
alts attribute; instead of being a primitive. data type (i.e. 
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3-D space” dw kev int 

self int key 
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x float 
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b short-nm (string 4) 
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atom int f-key atom 
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alternativegos 
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integer, character, string, float, double), it is defined as a 
data structure representing the Cartesian coordinates and 
flexibility of the alternative position, as well as the 
probability of the atom being there. It is also possible to 
define a” attribute to be a pointer to a” instance of another 
class. Second, each attribute has a” arity associated with 
it, representing the number of values it ca” or must have. 
The possible values are: 

l key: the attribute is single values, required and 
unique 

l f-key class: the attribute is single. valued and 
optional, but if it exists, it must also occur in the 
key member of class 

l 0: the attribute is optional and single valued. 
This is the default value if no arity is specified. 

l #: the attribute has exactly the number of values 
specified by the integer value of # (i.e. the x, y, 
and z attributes must contain exactly I attribute) 

l N: the attribute is optional and multi-valued 
l 1-N: the attribute is multi-valued but must have 

at least 1 associated value 
To ensue that abstractions remain a superset of the 

component databases, incorporating a new database 
requires updating them in two ways. First, any previously 
unknown concepts represented by the new data source 
must be incorporated into the class hierarchy. Second, 
any new representations or components of a” existing 
abstraction must be added to its attribute list. 

Figure 3. Example of ontology data. 

4.2. Database descriptions 

Database descriptions are language independent 
definitions of the information contained within a single 
database. These definitions arc used to identify the 
translations that must be performed when transferring 
data between a specific data source and target. They can 
also be used as hints for automatically creating a new 
database description after a schema modification, such as 
those used by [4]. 

As the warehouse description in Figure 3 shows, the 
ontology representation of a database closely mirrors the 
physical layout of a relational database. In this example, 
the table (class) name, atom, is followed by a comment 
and a list of associated attributes. There are two 
advantages to “sing this independent representation of the 
data. First, the database attributes have the same 
functional expressibility as the abstraction attributes 
described above. As a result, they are able to represent 
non-relational data sources, including object-oriented 
databases and flat files; a crucial capability when dealing 
with a heterogeneous environment. Second, the ability to 
comment the database descriptions improves warehouse 
maintainability by reducing the potential for future 
confusion. Class comments may be used to clarify the 
interactions with other classes, define or refine the 
concept associated with a table, etc.. These comments are 
complimented by attribute comments (not shown) that, 
while infrequently used for abstraction attributes, provide 



(define-instance genomc-lransformations (abstraction-enhancement) 
:def (= genome-transformations 

‘(“/home/critchlo/datn-w~ehouselontologyllib~genome.lib” 
(amino-acid 

(translation-methods (full-to-one-char) 
(full-to-three-char) 
(one-char-to-full) 
(three-char-to-full)) 

(class-methods (three_char_to_one_char 
(“one-char” character))) 

(class-data ((natne-conversion-table 
((“one-char” character) 
(“three-char” (string 3)) 
(“full-name” (string 40))) 28) 

(( (“A”, “ALA”, “Alanine”), {“R”, “ARC, “Arginine”), 
(“IV’, “ASN”, “Asparagine”), (“D”, “ASP”, “Aspartic acid”), 

1)). . ..))I 

Figure 4. Transformation definitions. 

additional me&data about the attribute’s purpose and 
representation. 

As databases are integrated into the warehouse, their 
descriptions must be entered into the ontology. 
Furthermore, as their schemata change the database 
descriptions and mappings contained within the ontology 
must adapt appropriately. These modifications are 
currently made by the DBA, but we plan to investigate 
automating this process. Because of the similarity 
between the ontology and relational formats, it is possible 
to automatically generate most of the ontology description 
directly from the meta-data associated with most 
commercial DBMSs; obviously the DBA must still 
explicitly enter any comments they wish to provide. 
However, because most flat file databases do not maintain 
any meta-data, the ontology description must be manually 
defined. 

4.3. Mappings 

Mappings identify the correspondence between 
database descriptions and abstractions at both the class 
and attribute levels. In particular, several source classes 
are mapped onto a single target class to completely define 
an instance of the target class. When the participating 
database is a data source, its classes comprise the possible. 
source classes and the abstraction classes are the possible. 
targets. The rcvc~se mapping is used for the warehouse. 
Because abstractions are an aggregation of the individual 
databases, there is always a direct mapping between 
database and abstraction attributes. Due to 
representational differences, however, an abstraction may 
be split acmss several database classes and a single 
database class may be related to several abstractions. 

This ensues that we are able to define complete instances 
of the target class. 

Figure 3 demonstrates how the warehouse nmm and 
alts tables are mapped to the amms abstraction. By 
default, the ah and afom classes are joined on the key I 
f-key relationships identified in the database description. 
Because ah is an optional attribute of aforns, an outer 
join is used to associate the alternative positions with the 
appropriate atom; if it was required, a natural join would 
have been used instead. Ambiguity about which 
attributes should participate in the join may arise if there 
are multiple foreign key references in a single table. This 
ambiguity is resolved by explicitly identifying the join 
conditions in the mapping definition. 

4.4. Transformations and other user extensions 

Transformations describe which attributes contain the 
same data, but in different formats, and identify the 
methods that can be used to translate between them. The 
ontology does not define these methods explicitly, instead 
it records just their names and locations. DataFoundry 
uses a naming convention to identify the attributes 
manipulated with a particular method. An alternative, 
more verbose, approach would be to 6xplicitly associate 
the participating attributes with each method. In either 
case, these methods are restricted to operating only on 
class member vziables and, as such, do not require any 
parameters. To provide the maximum flexibility, 
D&Foundry allows two types of other extensions to be 
associated with an abstraction, and thus shared with all its 
instances: class methods and class data. 

Figure 4 presents the extensions for the amino-acid 
abstraction. A simple naming convention of 
mum-attribute -to- target-attribute permits the 
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Figure 5. Using the ontology to generate the mediator classes. 

attributes associated with each method to be easily 
identified. It is important to note that a sequence of 
method invocations may be required to obtain the desired 
representation. For example, the conversion from 
fhree_chnr to one-char takes two steps; first converting 
from three-char to full, then from full to one-char. The 
class method three-char-to-one-char returns the 
corresponding one-char value for a given three-char 
value; however, since it can be invoked without an 
associated amino-acid instance, it may not modify the 
instance attributes as the sequence of transformation 
method invocations would. This method would be used 
in another class that requires the ability to convert 
between representations, but does not require an instance 
of this class. For example, the sequence class may need 
to convert a string representing an amino acid list in l- 
character format to an equivalent string using 3-character 
format. Creating amino acid instances for each element 
of the sequence would be useful, so this method would be 
useful. Class data is useful for providing information 
such as a translation table that does not vary between 
instances of the class. 

There are two benefits to identifying these methods 
in the ontology. First, and most obvious, it provides the 
ontology with the final piece of knowledge required to 
generate the mediators. However, a subtler benefit is the 
combination of the transformation methods into a single 
library. By explicitly identifying these methods, and 
defining them in a single location, code re-use is 
encouraged and maintenance costs reduced. 

5. Automatic mediator generation 

Once the ontology has been defined, an ontology 
engine (OE) is used to generate the C++ classes and 
methods that comprise the mediator. Figure 5 outlines 
how the ontology concepts discussed in the previous 
section relate to various components of the mediator. For 
example, the atoms abstraction is mapped into a class in 
the translation library that includes all of its attributes, 
methods to access these attributes, and any associated 
transformation methods OI other user-defined extensions. 

As shown, the mediator functionality is decomposed 
into a translation library and a set of mediator classes. 



The translation library represents the classes and methods 
associated with the ontology abstractions, while the 
mediator classes are responsible for performing the data 
transformations. The API available to the wrapper is a 
combination of the mediator class and translation library 
APIs. The process of obtaining these components from 
the ontology is relatively straightforward, and is therefore 
only discussed briefly below. 

The translation library encapsulates the class 
definitions and methods associated with the domain- 
specific abstractions. The OE defines a distinguished 
abstraction class, and one class for each ontology 
abstraction. The inheritance hierarchy is the same as the 
ontology abstraction hierarchy, except that the base 
classes inherit from absmxtion. This provides all classes 
with a minimal amount of functionality, including access 
to both the source and target databases. The data 
members associated with a class correspond to the 
abstraction attributes; static data members are used to 
represent the class-data extensions. Abstractions used as 
multi-valued attributes have an additional data member, 
nexr>tr, which is used to create a linked-list. Classes are 
also defined for complex data types, which are named 
based on the corresponding attribute name. For each 
attribute, the OE defines two data access methods: one to 
read it, the other to write it. The appropriate usa defined 
extensions are also included in the class API as static 
methods. 

Mediator class generation is only slightly more 
difficult than generating the translation library. For each 
defined source - warehouse pair, a mediator class is 
generated to perform the data transformations and enter 
the data into the warehouse. Different classes arc used 
because the transformations vary depending on the source 
format, and using a pure data-driven approach to 
dynamically identify the appropriate transformations 
would be too slow. The alternative of defining multiple 
methods for a single class was deemed aesthetically 
unappealing, although it is a functionally equivalent 
approach. For each class, a single method takes the top- 
level abstractions, converts them to the warehouse format, 
and transfers the data to the warehouse. 
The set of required transformations is obtained by 
comparing the attributes provided by the data source to 
the ones required by the warehouse. If a warehouse 
attribute is not directly available from the source, the OE 
searches for a sequence of transformation methods that 
will generate the desired attribute. If there is no such 
sequence, and the attribute is not required, its value is set 
to NULL. If the attribute is required an error is generated, 
notifying the DBA that another transformation method is 
required. Because of their complexity, the OE will not 
attempt to invoke any of the class methods. Once all the 
warehouse attributes are defined, the OE uses its SQL 
interface to generate commands to perform the transfer. 

As databases evolve and additional data sources are 
integrated, new database descriptions and mappings are 
defined. These may, in turn, require adding new 
abstractions, extending the attribute set associated with an 
existing abstraction, and defining new translation 
methods. Incorporating a new data source requires the 
DBA to describe it, map the source attributes to 
corresponding abstraction attributes, ensure that all 
applicable transformation methods are defined, and create 
the wrapper. The OE creates the new mediator class, and 
expands the API as needed. Once a database has been 
integrated, adapting to schema changes often requires 
only modifying the wrapper to read the new format. 
Significant changes in the data representation may require 
the ontology to be modified and a new mediator created. 

6. Conclusion 

Da&Foundry is an ongoing research project at LLNL 
investigating warehousing techniques in dynamic 
scientific domains. In these domains, the high rate of 
schemata change makes it impractical to maintain a 
warehouse integrating several autonomous data sources 
using traditional methods. Ensuring the consistency and 
availability of a data warehouse requires the ability to 
quickly modify mediators to reflect these schema 
modifications. This paper presents D&Foundry’s meta- 
data based approach to mediator generation, which is 
designed to significantly reduce the time and effort 
necessary to manage these changes. We expect to have a 
functional prototype of the OE in place shortly, after 
which we will begin exploring other uses for the 
ontology. We anticipate pursuing research in the areas of 
automatic schema evolution, automatic schema 
integration, and relational wrapper generation. While it is 
likely that the content of the ontology will expand as these 
new directions are addressed, we believe the current 
concepts will remain relatively unchanged. 
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